

Performance Evaluation of the SX6 Vector Architecture for Scientific Computations

Leonid Oliker

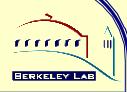
Future Technologies Group Computational Research Division

LBNL

www.nersc.gov/~oliker

Andrew Canning, Jonathan Carter, John Shalf, David Skinner: LBNL

Stephane Ethier: PPPL


Rupak Biswas, Jahed Djomehri, and Rob Van der Wijngaart: NASA Ames

Motivation

- Superscalar cache-based arch dominate US HPC
- Leading arch are commodity-based SMPs due to cost effectiveness and generality (and increasing peak perf)
- Growing gap peak & sustained perf well known in sci comp
- Modern parallel vectors offer to bridge gap for many apps
- Earth Simulator has shown impressive sustained perf on real scientific apps and higher precision simulations
- Compare single node vector NEC SX6 vs cache IBM Power3/4 for several key scientific computing areas
- Examine wide spectrum of algorithms, program paradigm, and parallelization strategies

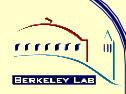
Architecture and Metrics

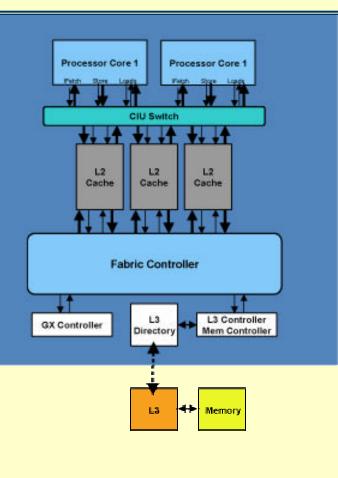
Node Type	Name	CPU/ Node	Clock MHz	Peak GFlop	Mem BW GB/s	Peak B/F	MPI Lat usec
Power3	Seaborg	16	375	1.5	0.7	0.4	8.6
Power4	Cheetah	32	1300	5.2	2.3	0.4	3.0
SX6	Rime	8	500	8.0	32	4.0	2.1

Microbenchmark performance

- Memory subsystem, strided, scatter/gather w/ STREAM/XTREAM
- MPI: point-point comm, network contention, barrrier synch w/ PMB
- ∠ OpenMP: reduction and thread creation w/ EEPC

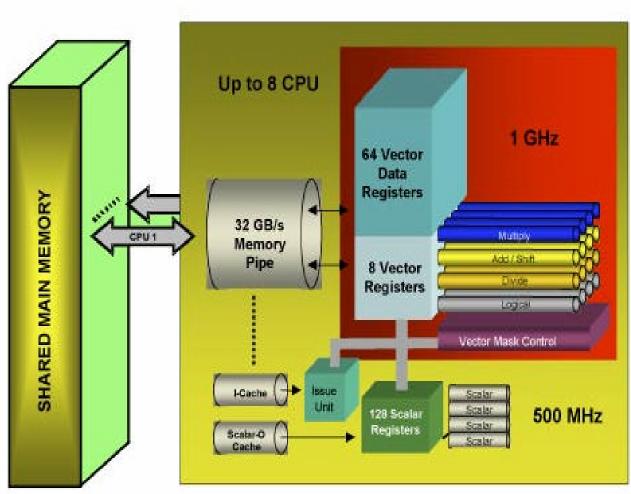
Application Performance


- CACTUS: Astrophysics Solves Einstein's equations
- TLBE: Fusion Simulations high temp plasma
- ∠ PARATEC: Material Science DFT electronic structures
- ∠ Overflow-D: CFD − Solves Navier-Stokes equation around complex geometries
- Mindy: Molec Dynamics Electrostatic interaction using Particle Mesh Ewald

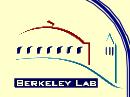

Power3 Overview

- ≥ 375 MHz procs w/ 2 FPU can issue MADD: peak 1.5 Gflops
- Short 3 cycle pipeline (low penalty branch misprediction)
- RISC, Peak 8 inst per cycle, sustained 4 inst per cycle
- Superscalar out-of-order w/prefetching
- ∠ CPU has 32KB Instr Cache and 128KB L1 Cache
- Off-chip 8MB 4-way set associative L2 Cache
- Multi-node networked IBM Colony switch (omega topology)

Power4 Overview

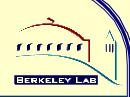


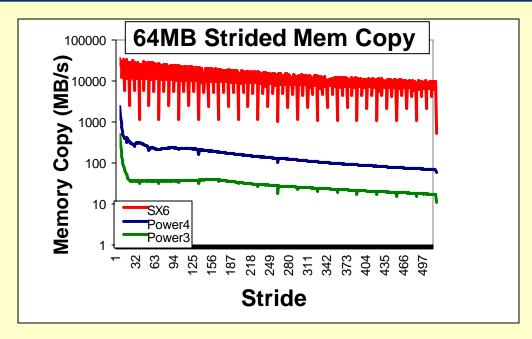
- ∠ Power4 chip contains 2 1.3 GHz cores
- Core has 2 FPU w/ MADD, peak 5.2 Gflop/s
- ∠ 2 load/store units per core
- ≥ 8-way suprsclr o-o-o, prefetch, brnch predict
- Private L1 64K Inst C and 32K Data C
- Shard 1.5 MB unified L2
- ∠ L2s on MCM connected point-point
- 32 MB L3 off-chip, can be combined w/ other L3s on MCM for 128MB L3
- Current Colony switch, future is Federation


SX6 Overview

- 8 Gflops per CPU
- 8 CPU per SMP
- 8 way replicated vector pipe
- 72 vec registers, 256 64-bit words
- MADD unit
- 32 GB/s pipe to DDR SDRAM
- 4-way superscalar o-o-o @ 1 Gflop
- 64KB I\$ & D\$
- ES: 640 SX6 nodes

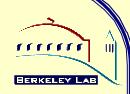
Memory Performance STREAM Triad

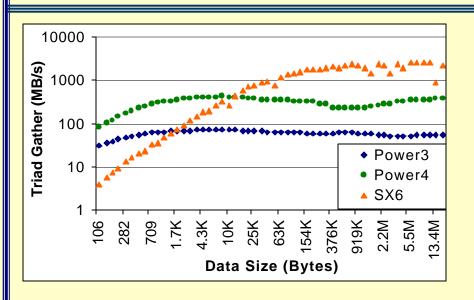


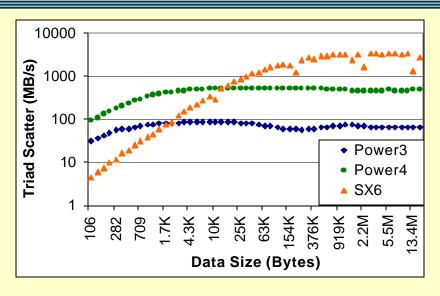

Р	Pov	ver 3	Pow	er4	SX6		
P	GB/s	%Deg	GB/s	%Deg	GB/s	%Deg	
1	0.66	0	2.29	0	31.9	0	
2	0.66	0	2.26	1.2	31.8	0.2	
4	0.64	2.6	2.15	6.2	31.8	0.1	
8	0.57	14.1	1.95	15.1	31.5	1.4	
16	0.38	42.4	1.55	32.3			
32			1.04	54.6			

$$a(i) = b(i) + s*c(i)$$

- Unit stride STREAM microbenchmark captures effective peak bandwidth
- SX6 shows negligible bandwidth degradation, Power3/4 degrade around 50% for fully packed nodes

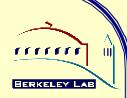

Memory Performance Strided Memory Copy

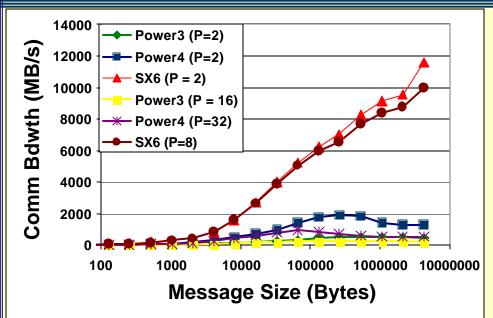




- SX6 achieves 3 and 2 orders of magnitude improvement over Power3/4
- SX6 shows less average variation
- DRAM bank conflicts affect SX6 : prime #s best, powers 2 worst
- ∠ Power3/4 drop in performance for small strides due to cache reuse

Memory Performance Scatter/Gather





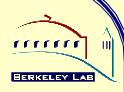
- Small (in cache) data sizes Power3/4 outperform SX6
- ∠ Larger data sizes SX6 significantly outperforms Power3/4
- SX6 large data sizes allows effective pipelining & scatter/gather hdwr

MPI Performance Send/Receive

Р		128KB		2MB			
	Pwr3	Pwr4	SX6	Pwr3	Pwr4	SX6	
2	0.41	1.76	6.21	0.49	1.13	9.58	
4	0.38	1.68	6.23	0.50	1.24	9.52	
8	0.34	1.63	5.98	0.38	1.12	8.75	
16	0.26	1.47		0.25	0.89		
32		0.87			0.57		

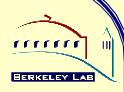
MPI Send/Receive (GB/s)

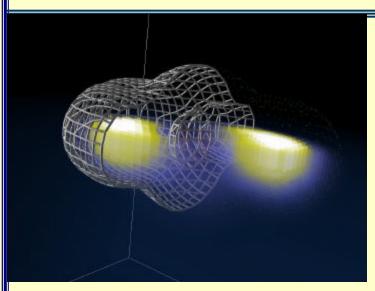
- For largest messages SX6 higher bdwth 27x Power3 and 8x Power4
- - Power3 46%, Power4 68%, SX6 7%


Synchronization and OpenMP Performance

		MPI (<i>u</i> sed	c)		OpenMP (<i>u</i> sec)							
Р	Synchronization			Thre	ad Spaw	ning	Scalar Reduction					
	Pwr3 Pwr4 SX6		Pwr3	Pwr4	SX6	Pwr3	Pwr4	SX6				
2	17.1	6.7	5.0	35.5	34.5	24.0	37.8	16.3	24.0			
4	31.7	12.1	7.1	37.1	35.6	24.3	40.6	17.3	24.3			
8	54.4	19.8	22.0	42.9	37.5	25.2	51.4	19.9	25.3			
16	79.1	28.9		132.5	54.9		64.2	38.1				
32		42.4			175.5			158.3				

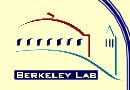
- For SX6 MPI synch, low overhead but increases dramatically w/8 procs
- OpenMP Thread Spawn, SX6 lowest overhead & least perf degradation
- OpenMP Scalar Reduction, Power4 fastest up to 8 procs, but with fully loaded SMP SX6 outperforms Pwr3/4 by factors of 2.5x and 6.3x
- Results show Power3/4 does not effective utilize whole SMP

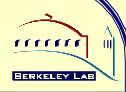

Scientific Kernels: NPB



	CG				FT				ВТ			
Р	Power 3		SX6		Power 3		SX6		Power 3		SX6	
	Mflop/s	%L1	Mflop/s	AVL	Mflop/s	%L1	Mflop/s	AVL	Mflop/s	%L1	Mflop/s	AVL
1	54	68	470	199	133	91	2021	256	144	96	3693	100
2	55	72	260	147	120	91	1346	256				
4	54	73	506	147	117	92	1324	255	127	97	2395	51
8	55	81	131	117	112	92	1241	254				
16	48	86			95	92			102	97		

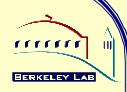
- ∠ CG on SX6, low perf due to bank conflicts & low AVL and low VOR (95%)
- FT on SX6 3 lines of code change (increase AVL), over 10x spdup vs Pwr3
- BT inline routines (necessary for vector) and manual expansion small loops Impressive serial perf (26x Pwr3). Larger P reduced AVL due to 3D decomp Poor Pwr3 16 proc perf due to large number of synchs

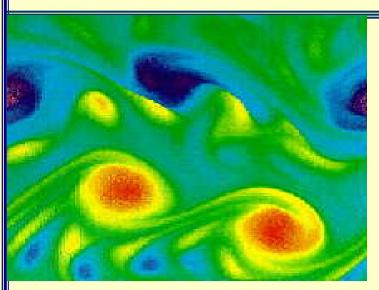

Astrophysics: CACTUS


- Numerical solution of Einstein's equations from theory of general relativity
- Set of coupled nonlinear hyperbolic & elliptic systems with thousands of terms
- CACTUS evolves these equations to simulate high gravitational fluxes, such as collision of two black holes
- Uses ADM formulation: domain decomposed into 3D hypersurfaces for different slices of space along time dimension
- Examine two versions of core CACTUS ADM solver:
 - <u>BenchADM</u>: older F77 based computationally intensive, 600 flops per grid point
 - BenchBSSN: (serial version) newer F90 solver intensive use of conditional statements in inner loop

CACTUS: Porting Details

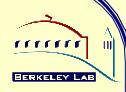
- Increasing x-dimension improved AVL and performance
- <u>BenchBSSN</u>: Poor initial vector performance
- ∠ Loops nest too complex for auto vectorization
- Explicit vectorization directives unsuccessful
- Diagnostic compiler messages indicated (false) scalar interloop dependency
- Converted scalars to 1D temp arrays of vector length (256)
- ∠ Increased memory footprint, but allowed code to vectorize

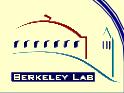

CACTUS: Performance



Code	Р		Power 3		Power4			SX6	
Code		Size	Mflop/s	%L1	Mflop/s	%L1	Mflop/s	AVL	VOR
ADM	1	127 ³	274	99.4	672	92.2	3912	127	99.6%
ADM	8	127 ³	251	99.4	600	92.4	2088	127	99.3%
ADM	16	127 ³	223	99.4	538	93.0			
ADM	32	127 ³			380	97.0			
BSSN	1	80x80x40	209		547		1765	80	99%

- BenchADM: SX6 achieves 14X and 6X speedup over Power3/4 SX6's 50% of peak is highest achieved for this benchmark
- BenchBSSN: SX6 is 8.4X and 3.2X faster than Power3/4 (80x80x40)
- Lower SX6 performance due to conditional statements Power3/4 performance improves w/ small problems (opposite SX6)
- Strong correlation between AVL and SX6 performance (long vectors)

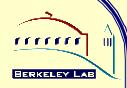

Plasma Fusion: TLBE

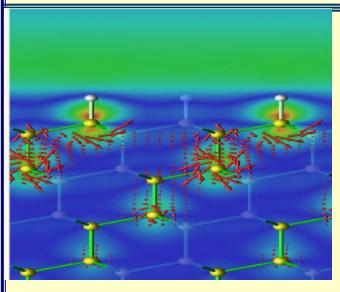

- TLBE uses a Lattice Boltzmann method to model turbulence and collision in fluid
- Performs 2D simulation of high temperature plasma using hexagonal lattice and BGK collision operator
- Pictures shows vorticity contours in 2D decay of shear turbulence from TLBE calc
- Three computational components:
 - ∠ Integration Computation of mean macroscopic variable (MV)
 - ∠ Collision Relaxation of MV after colliding
- First two steps good match for vector each grid point computed locally Third step requires strided copy
- Distributing grid w/ 2D decomp for MPI code, boundary comm for MV

TLBE: Porting Details

- Slow initial performance using default (-C opt) & aggressive (-C hopt) compiler flags 280Mflops
- Flow trace tool (ftrace) showed 96% of runtime in collision
- AVL of 6: vectorized along inner loop of hexagonal directions, instead of grid dimensions
- Collision routine rewritten using temporary vectors and switched order of two loops to vectorize over grid dim
- Inserted new collision into MPI code for parallel version

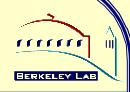
TLBE: Performance




Р	Pow	er 3	Pow	ver4	SX6		
P	Mflop/s	%L1	Mflop/s	%L1	Mflop/s	AVL	VOR
1	70	50	250	58	4060	256	99%
2	110	77	300	69	4060	256	99%
4	110	7 5	310	72	3920	256	99%
8	110	77	470	87	3050	255	99%
16	110	73	360	89			
32			440	89			

2048x 2048 Grid

- SX6 perf degrades w/ 8 procs: bandwidth contention & synch overheads
- ∠ Power3/4 parallel perf improves due to improved cache (smaller grids)
- Complex Power4 behavior due to 3-level cache and bandwidth contention

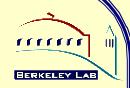

Material Science: PARATEC

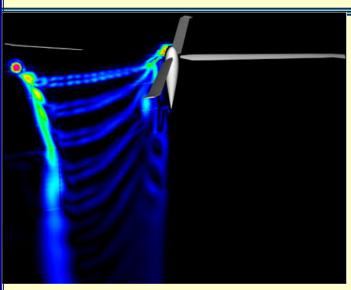
- PARATEC performs first-principles quantum mechanical total energy calculation using pseudopotential & plane wave basis set
- Density Functional Theory to calc structure
 & electronic properties of new materials
- DFT calc are one of the largest consumers of supercomputer cycles in the world
- PARATEC uses all-band CG approach to obtain wavefunction of electrons
- Part of calc in real time other in Fourier space using specialized 3D FFT to transform wavefunction
- Code spends most time in vendor supplied BLAS3 and FFTs
- Generally obtains high percentage of peak on different platforms
- MPI code divides plane wave components of each electron across procs

PARATEC: Porting Details

- Compiler incorrectly vectorized loops w/ dependencies "NOVECTOR" compiler directives were inserted
- SX6 BLAS3 efficient with high vectorization
- ✓ Standard SX6 3D FFT (ZFFT) ran low percentage of peak
- Necessary to convert 3D FFT to simultaneous 1D FFT calls (vectorize across the 1D FFTs)

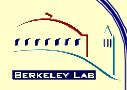
PARATEC: Performance

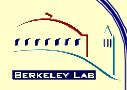



Р	Power 3	Power4	SX6				
	Mflop/s	Mflop/s	Mflop/s	AVL	VOR		
1	915	2290	5090	113	98%		
2	915	2250	4980	112	98%		
4	920	2210	4700	112	98%		
8	911	2085	4220	112	98%		
16	840	1572					
32		1327					

250 Si-atom system w/ 3 CG steps

- ∠ PARATEC vectorizes well (64% peak on 1 P) due to BLAS3 and 3D FFT.
- ∠ Loss in scalability due to initial code set up (I/O etc) that does not scale
- Performance increases with larger problem sizes and more CG steps
- ∠ Power3 also runs at high efficiency (61% on 1 P)
- Power4 runs at 44%, and perf degrades due to poor flop/bdwth ratio However 32 SMP Power4 exceeds performance of 8 SMP SX6

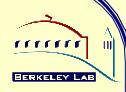

Fluid Dynamics: OVERFLOW-D


- OVERFLOW-D overset grid method for highfidelity Navier Stokes CFD simulation
- Viscous flow simul for aerospace config
- Can handle complex designs with multiple geometric components
- Flow eqns solved independ on each grid, boundary values in overlap then updated
- Finite difference in space, implicit/explicit time stepping
- Overlapping boundary points updated using a Chimera interpolation
- Code consists of outer "time-loop" and inner "grid-loop"
- MPI version based on multi-block serial code (block groups per proc)
- Hybrid paradigm exploits second level of parallelism
- OpenMP directives used within grid loop (comp intensive section)

OVERFLOW-D: Porting Details

- Original code was designed to exploit vector arch
- Changes for SX6 made only in linear solver: LU-SGS combines LU factorization and Gauss-Siedel relaxation
- Changes dictated by data dependencies of solution process
- On IBM a pipeline strategy was used for cache reuse
- On SX6 a hyper-plane algorithm was used for vectorization
- Several other code mods possible to improve performance

OVERFLOW-D: Performance

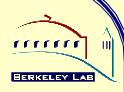


8	million
gr	id points
10 t	ime steps

Р	Pow	er 3	Power4	SX6			
	sec	%L1	sec	sec	AVL	VOR	
2	47	93	16	5.5	87	80%	
4	27	95	8.5	2.8	84	76%	
8	13	97	4.3	1.6	79	69%	
16	8	98	3.7				
32			3.4				

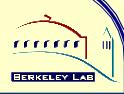
- SX6 8 processor time less than one half 32 processor Power4
- Scalability similar for both architectures due to load imbalance
- SX6 low AVL and VOR explain max of only 7.8 Gflop/s on 8 procs
- Reorganizing code through extensive effort would improve SX6 perf
- SX6 outperforms Power4 for both MPI and hybrid (not shown)
- Hybrid increased complexity with little performance gain however can help with load balancing (when few blocks relative to procs)

Magnetic Fusion: GTC



- Gyrokinetic Toroidal Code: transport of thermal energy (plasma microturbulence)
- Goal is burning plasma power plant producing cleaner energy
- GTC solves gyroaveraged gyrokenetic system w/ particle-in-cell approach (PIC)
- ∠ PIC scales N instead of N² particles interact w/ electromag field on grid
- Allows eqns of particle motion solved with ODEs (instead of nonlinear PDEs)
- Main computational tasks:

 - ∠ Gather: Calc force on each particle based on neighbors potential

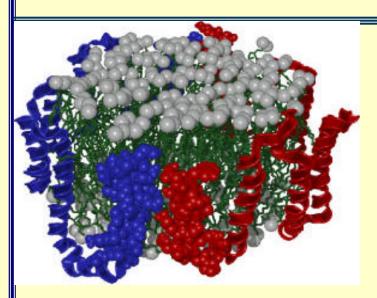

 - Find particles moved outside local domain and update
 - Expect good parallel performance since Poisson eqn solved locally

GTC: Porting Details

- Initially compilation produced poor performance
 - Nonuniform data access and many conditionals
- Necessary to increase "loop count" compiler flag
- Removed I/O from main loop to allow vectorization
- Compiler directed loop fusion helped increase AVL
- Bottleneck in <u>scatter</u> operation: many particles deposit charge to same grid point causing memory dependence
- ∠ Each particle writes to local temp array (256) no depend
- Arrays merged at end of computation
- No depend, but increase mem traffic and reduced flop/byte

GTC: Performance

Р	Pow	er 3	Pow	rer4	SX6		
	Mflop/s	%L1	Mflop/s	%L1	Mflop/s	AVL	VOR
1	153	95	277	89	701	187	98%
4	163	96	310	91	548	182	98%
8	167	97	326	92	391	175	97%
16	155	97	240	93			
32			27 5	93			


- ∠ Modest 9% peak SX6 serial performance (2.7x and 5.3x faster Power3/4)
- Scalar units need to compute indices for indirect addressing
- Scatter/gather required for underlying unstructured grid
 - Also at odds with cache based architecture

4 million particles 301,472 grid pts

- Although scatter routine "optimized" running at only 7% peak
- Extensive algorithmic & implem work required for high performance

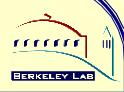
Molecular Dynamics: Mindy

- Simplified serial molecular dynamics C++, derived from parallel NAMD (Charm++)
- MD simulations infer functions of biomolecules from their structures
- ∠ Insight to biol process & aids drug design
- Mindy calc forces between N atoms via Particle Mesh Ewald method O(NlogN)
- ∠ Divide into boxes, comp electrostatic interaction w/ neighbor boxes
- Neighbor lists and cutoffs used to decrease # of force calcs
- Reduction of work from N² to NlogN causes:
 - ∠ Increase branch complexity
 - Nonuniform data access

Mindy: Porting Details

- ∠ Uses C++ objects: compiler hindered in ability to vectorize
 - Aggregate date types call member functions
 - ∠ Compiler directive (no dep) used, but w/ limited success
- Two optimization strategies, NO_EXCLUSION & BUILD_TMP
- ∠ NO_EXCLUSION: Decrease # of conditionals & exclusions
 - ∠ Increase vol of comp but reduces inner-loop branching
- BUILT_TMP: Gen temp list of inter-atom forces to comp Then compute force calc on list with vectorized loop
 - ∠ Increase comp & requires extra mem (reduce flop/byte)

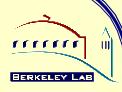
Mindy: Performance



Power	3 Power	4 SX	6: NO_E	KCL	SX6: I	BUILD_	_TMP
sec	sec	sec	AVL	VOR	sec	AVL	VOR
15.7	7.8	19.7	78	0.03%	16.1	134	35%

922224 atom system

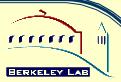
- ∠ Poor SX6 performance (2% of peak), half speed of Power4
- ∠ NO_EXCL: Small VOR, all work performed in scalar unit (1/8 of vec unit)
- ∠ BUILD_TMP: Increased VOR, but increased mem traffic for temp arrays
- This class of app at odds w/ vectors due to irregular code structure
- ∠ Poor C++ vectorizing compiler –difficult to extract data-parallelism
- Effective SX6 use requires extensive reengineering of algorithm and code


Application Summary

Name	Discipline	Lines Code	Р	Pwr3	Pwr4	SX6	SX6 speedup vs	
				% Pk	%Pk	%Pk	Pwr3	Pwr4
TLBE	Plasma Fusion	1500	8	7	9	38	28	6.5
Cac-ADM	Astrophys	1200	8	17	12	26	14	5.8
Cac-BSSN	Astrophys	8200	1	14	11	22	8.4	3.2
OVER-D	Fluid Dynam	100000	8	8	7	12	8.2	2.7
PARATEC	Mat Science	50000	8	61	40	53	4.6	2.0
GTC	Magn Fusion	5000	8	11	6	5	2.3	1.2
MINDY	Molec Dynam	11900	1	6	5	2	1.0	0.5

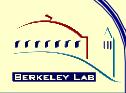
- ∠Comp intensive CAC-ADM only compiler directives (14x P3 speedup)
- ∠CAC-BSSN, TLBE, minor code changes for high % peak
- ∠OVER-D substantially diff algorithmic approach, fair perf on both arch
- ∠PARATEC relies on BLAS3 libraries, good performance across all arch
 ∠GTC and Mindy poor vector performance due to irregular comp

Summary



- Microbenchmarks: specialized SX6 vector/memory significantly outperform commodity-based superscalar Power3/4
- Vector optimization strategies to improve AVR and VOR
 - ∠ Loop fusion/reordering (explicit /compiler directed)
 - Intro temp variables to break depend (both real & compiler imagined)
 - Reduction of conditional branches
 - Alternative algorithmic approaches
- Vectors odds with many modern sparse/dynamic codes
- Direct all-to-all methods may be ineffective at petascale
- Modern C++ methods difficult to extract data parallel
- Vectors specialized arch extrem effective for restricted class of apps

Future work



- Develop XTREAM benchmark to examine microarchitecture characteristics and compiler performance
- Develop SQMAT microbenchmark, tunable computational intensity and irregularity
- Examine key scientific kernels in detail
- More applications: Climate, AMR, Cosmology
- ∠ Leading architectures: ES, X1, EV7
- ∠ Future arch of various comp granularities w/ new interconn

Extra Slides

CACTUS: Performance

Serial	Problem Size	Power 3	Power4	SX6		
Code		Mflop/s	Mflop/s	Mflop/s	AVL	VOR
Bench ADM	128x128x128	34	316	4400	127	99%
Bench BSSN	128x128x64	186	1168	2350	128	99%
	80x80x40	209	547	1765	80	99%
	40x40x20	249	722	852	40	98%

- BenchADM: SX6 achieves 129X and 14X speedup over Power3/4! SX6's 55% of peak is highest achieved for this benchmark
- BenchBSSN: SX6 is 8.4X and 3.2X faster than Power3/4 (80x80x40)
- ∠ Lower SX6 performance due to conditional statements
- Strong correlation between AVL and SX6 performance (long vectors)
- ∠ Power3/4 performance improves w/ smaller problem size (unlike SX6)